M. Bulut [a] and Ç. Erk [b]*

[a] University of Marmara, Department of Chemistry, Kadıköy, 81040, Istanbul, Turkey
[b] Technical University of İstanbul, Department of Chemistry, Maslak, 80626, Istanbul, Turkey Received June 29, 2001

Abstract

3-Phenyl- and 3-(p-methoxyphenyl)-7,8-dihydroxy and -6,7-dihydroxychromenones were prepared from ethyl 3-oxo-2-phenylpropanoate, ethyl 3-oxo-2-(4-methoxyphenyl)-propanoate and the trihydroxy benzenes in $\mathrm{H}_{2} \mathrm{SO}_{4}$. 3-Aryl-7,8- and 3-aryl-6,7-dihydroxy-2H-chromenones reacted with the bis-dihalides of polyglycols in DMF/MeCO ${ }_{3}$ to afford 12-Crown-4, 15-Crown-4 and 18-Crown-6-chromenones. The products were identified with IR, 1H NMR, low and high resolution mass spectroscopy and elemental analysis. Some 1:1 cation association constants, K_{b}, of the 3-phenyl chromenone crown ethers with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$and Rb^{+} cations were studied by steady state emission fluorescence spectroscopy; K_{b} chromenone-crown complexes displayed crown ether-cation binding selectivity rules properly in acetonitrile.

J. Heterocyclic Chem., 38, 1291 (2001).

Introduction.
Macrocyclic ethers have been used to estimate cationic recognition and selective cation binding with different physical methods [1-3]. The effect of the cation on the chromophore crown ethers utilised fluorescence spectroscopy since the binding of cations mostly induce changes in triplet energy relative to excited singlet, $\mathrm{S}_{1} \rightarrow \mathrm{~T}_{1}$ and ground state $\mathrm{T}_{1} \rightarrow \mathrm{~S}_{0}$ energies of the chromophore moieties [4-7].
We have recently synthesised various crown ethers with different chromophore moieties and reported their cationic interactions using steady state fluorescence spectroscopy in acetonitrile [8-10]. The crown ether derivatives of the 4-H and 4-methyl-6,7-dihydroxy- and -7,8-dihydroxycoumarins displayed the binding effect of alkali cations on the fluorescence emission spectra. They exhibited good agreements on the cation radii and the macrocyclic molecule size as reported [8-10]. The chromophore ethers were mostly capable of displaying the effect of the cation via UV-VIS spectra due to the restriction on the π-electron flow [11]. The reports of Sammes et al [12], and Rodriguez-Ubis et al [13], on such structures have shown the importance of the synthesis and cation recognition role of chromofluorogenic compounds. Detailed information, on the literature was also given in our recent report [14].
The present work deals with the preparation of the novel crown ethers bearing 3-phenylcromenone moieties, which were studied with fluorescence spectroscopy to investigate cation complex formation with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, and Rb^{+} perchlorates [8-11].
Results and Discussion.
Organic Synthesis.
Starting products of ethyl phenyl acetate, $\mathbf{1 f}$ and ethyl (4-methoxyphenyl) acetate $\mathbf{1 g}$, were prepared from ethyl format reacting with ethyl phenyl acetate and ethyl
(4-methoxyphenyl) acetate via Claisen condensation. The 6,7-dydroxychromenones, 2a and 2b were prepared from 1a reacting with $\mathbf{1 f}$ and $\mathbf{1 g}$. 7,8-Dihydroxychromenones, $\mathbf{2 c}$ and $\mathbf{2 d}$ were prepared from $\mathbf{1 b}$ reacting with $\mathbf{1 f}$ and $\mathbf{1 g}$ in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, Scheme 1 . The chromenonecrown ethers were obtained by cyclic condensation of the o-dihydroxy-chromenones with the bisdihalides and bisditosylates of polyglycols.

Namely, 2a reacted with 1c, 1d and 1e to afford the crown ethers, 3a, 3b and 3c. Compound $\mathbf{2 c}$ reacted with $\mathbf{1 c}, \mathbf{1 d}$ and $\mathbf{1 e}$ to afford the crown ethers, $\mathbf{4 b}, \mathbf{4 c}$ and $\mathbf{4 d}$. Accordingly, 2d reacted with 1c, 1d and 1e to afford the crown ethers, $\mathbf{4 d}, \mathbf{4 e}$ and $\mathbf{4 f}$, in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{DMF}$, Scheme 1. The full spectral data of the original products are given in the experimental part while the known compounds are presented with just NMR data.

Cationic Fluorescence Measurements.

The cation binding constants, K_{b} of chromenone-crowns with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, and Rb^{+}perchlorates obtained according to Equations 1-3 were found to be rather interesting. 3-Phenylchromenones exhibit strong fluorescence emission intensities due to their high quantum yields.

$$
\begin{align*}
& \mathrm{L}+\mathrm{M}^{+} \stackrel{\mathrm{M}^{+} \mathrm{L}}{\rightleftarrows} \tag{1}\\
& \mathrm{~K}_{\mathrm{b}}=\left[\mathrm{M}^{+} \mathrm{L}\right] /[\mathrm{L}]\left[\mathrm{M}^{+}\right] \tag{2}\\
& \left(\mathrm{I}_{\mathrm{x}}-\mathrm{I}_{\mathrm{o}}\right) /\left(\mathrm{I}_{\max }-\mathrm{I}_{\mathrm{x}}\right)=\mathrm{K}_{\mathrm{b}}\left[\mathrm{M}_{\mathrm{o}}\right] \tag{3}
\end{align*}
$$

The association constants K_{b}, estimated from the emission fluorescence spectra of the chromenone-crown complexes displayed ether-cation binding selectivity rules in acetonitrile (AN), Table 1. However, 7,8-dioxa derivatives have exhibited CEFS upon cation complexing while the 6,7-dioxa-chromenones gave CEQFS as they are complexed in AN. Similar behaviours were also observed from other derivatives of such chromophore structures in our earlier studies [8-10].

Scheme 1

3a, 3b, 3c

	n	R
$\mathbf{3 a}$	0	H
$\mathbf{3 b}$	1	H
$\mathbf{3 c}$	$\mathbf{2}$	H
$\mathbf{4 a}$	0	H
$\mathbf{4 b}$	1	H
$\mathbf{4 c}$	$\mathbf{2}$	H
$\mathbf{4 d}$	$\mathbf{0}$	MeO
$\mathbf{4 e}$	1	MeO
$\mathbf{4 f}$	2	MeO

Table 1
The Fluorescence Properties and 1:1 Association, $\ln \mathrm{K}_{\mathrm{b}}$ of Crown Ethers at $25^{\circ} \mathrm{C}$ in AN

Compound	$\lambda \mathrm{ex}$	$\lambda \mathrm{em}$	I_{0}	$\mathrm{I}_{\text {max }}$	Cat.	$\ln \mathrm{K}_{\mathrm{b}}$	$\Delta \mathrm{G}(\mathrm{kJ} / \mathrm{mol})$
3 a	381	444	550	50	Li^{+}	3.75	9.2
	381	444	550	50	Na^{+}	4.39	10.8
3b	370	443	870	500	Na^{+}	6.55	16.2
	370	443	865	50	K^{+}	5.65	13.9
3c	350	440	888	700	Na^{+}	6.95	15.7
	350	443	930	690	K^{+}	7.64	18.8
	350	443	896	770	Rb^{+}	8.36	20.6
4 a	367	425	270	90	Li^{+}	6.25	15.4
	367	425	295	90	Na^{+}	6.28	15.5
4b	367	425	88	266	Li^{+}	6.27	15.5
	367	425	101	280	Na^{+}	7.92	19.5
	367	425	110	180	K^{+}	7.51	18.5

EXPERIMANTAL

The starting chemicals were from MERCK or FLUKA unless otherwise cited. Initial compounds, 1c-1d were available from our earlier studies [8-11]. IR spectra were taken as KBr pellets with a JASCO FT-IR spectrometer, model-5300. High resolution EI Mass spectra were obtained with FISONS instrument, model VG-ZABSPEC. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a BRUKER spectrometer, model AVANCE-400CPX and TMS was the internal standard. All mp reported are uncorrected. Combustion analyses were acquired with a LECO-932 CHN analyser. The steady state fluorescence emission spectra were recorded with a JEOL spectrofluorometer, model FP-750 using the standard software at $25^{\circ} \mathrm{C}$.

The 1:1 binding constants, K_{b}, were estimated according to the method of de Silva et al, [7] using the equation, $\mathrm{K}_{\mathrm{b}}\left[\mathrm{M}_{\mathrm{o}}\right]=$ $\left[I_{x}-I_{0}\right] /\left[I_{\text {max }}-I_{x}\right]$ from the data of steady state fluorescence emission spectroscopy. The intensity of the free (uncomplexed) macrocycle is I_{o} and the I_{x}, is the fluorescence peak intensity of a crown ether in the presence of any cation concentration, $\left[\mathrm{M}_{0}\right]$. $\mathrm{I}_{\text {max }}$ is obtained in the presence of excess of a cation concentration. The solutions of the cations in dry $\mathrm{CH}_{3} \mathrm{CN},\left(5.0 .10^{-3} \mathrm{~mol} / \mathrm{L}\right)$ were added stepwise to a stirred 2.00 mL solution of the macrocyclic ether, $\left(2.5 \cdot 10^{-4} \mathrm{~mol} / \mathrm{L}\right)$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ in a $10-\mathrm{mm}$ quartz cell placed in the spectrophotometer cell compartment. The $\left[\mathrm{I}_{\mathrm{x}}-\mathrm{I}_{\mathrm{o}}\right] /\left[\mathrm{I}_{\text {max }}-\mathrm{I}_{\mathrm{x}}\right]$ values are plotted versus $\left[\mathrm{M}_{\mathrm{o}}\right]$ from the recorded intensity data. The slope of the least squared line gives the binding constant, $\mathrm{K}_{\mathrm{b}},(\pm 0.08)$. However, only the behaviour of compounds $\mathbf{3 a - 3 c}$ and $\mathbf{4 a}, \mathbf{4 b}$ have been reported due to the limited solubility of others in AN.
Ethyl 3-Oxo-2-phenylpropanoate (1f).
A solution of dry ether (200 ml) methylformat (24.5 g , $410 \mathrm{mmol})$, ethyl phenyl acetate ($76.8 \mathrm{~g}, 400 \mathrm{mmol}$) and Na ($9.45 \mathrm{~g}, 410 \mathrm{mmol}$) were mixed and heated for 24 hours. The mixture was washed with water, dried $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ and distilled to give (1f), $58.0 \mathrm{~g}(30 \%)$, bp $80^{\circ} \mathrm{C} / 0.05$ torr-; IR (KBr) $3020(\mathrm{Ph})$, $1720(\mathrm{C}=0) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.31(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.25(\mathrm{~d}, \mathrm{H}, \mathrm{CH}), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar})$, 7.49 (d, 2H, Ph), 12.1 (d, 1H, CHO).

Ethyl 2-(4-Methoxyphenyl)-3-oxopropanoate ($\mathbf{1 g}$).
A solution of dry ether (200 mL) methylformat (12.2 g , 205 mmol), ethyl (4-methoxyphenyl) acetate ($44.4 \mathrm{~g}, 200 \mathrm{mmol}$) and $\mathrm{Na}(4.75 \mathrm{~g}, 205 \mathrm{mmol})$ were refluxed for 24 hours. The solution was washed with water, dried $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ and the ether was evaporated. The distilled residue yielded ($\mathbf{1 g}$), $17.0 \mathrm{~g}(38 \%)$, bp $120^{\circ} \mathrm{C} / 0.05$ torr-; IR (KBr) $3030(\mathrm{Ph}), 2890\left(\mathrm{CH}_{3}\right), 1735(\mathrm{C}=0)$, $1150(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.31(\mathrm{t}, 3 \mathrm{H}$, CH_{3}), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.26(\mathrm{~d}, \mathrm{H}, \mathrm{CH})$, 6.86 (d, 2H, ArH), $7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 11.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHO})$.

6,7-Dihydroxy-3-phenyl-2H-chromen-2-one (2a).
1,2,4-Triacetoxybenzene, $\mathbf{1 a}$ ($10.5 \mathrm{~g}, 62.5 \mathrm{mmol}$), $\mathbf{1 f}(12 \mathrm{~g}$, $62.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(40 \mathrm{~mL}, 85 \%)$ were heated for 3 hours and cooled then poured into a water-ice mixture. The filtered raw product was dried and dissolved in hot methanol (100 mL) and boiled with the added charcoal then filtered to give (2a), 11.7 g (73%), mp $258{ }^{\circ} \mathrm{C}$ (yellowish crystals, acetone)-; IR (KBr) 3280
$(\mathrm{OH}), 1700(\mathrm{C}=\mathrm{O}), 1450(\mathrm{CH}), 1190(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 6.78(\mathrm{~s}, \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~s}, \mathrm{H}, \mathrm{ArH}), 7.42$ (m, 3H, ArH), 7.67 (d, 2H, ArH), 7.69 (s, H, cumH): ms: m/z 254 $\left(\mathrm{M}^{+}\right), 226\left(\mathrm{M}^{+}-28\right), 152\left(\mathrm{M}^{+}-102\right), 141\left(\mathrm{M}^{+}-113\right), 113$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$: C, 70.86; H, 3.96. Found C, 70.81; H, 4.01

6,7-Dihydroxy-3-(4-methoxyphenyl)-2H-chromen-2-one (2b).
1,2,4-Triacetoxybenzene, 1a ($4.2 \mathrm{~g}, 25 \mathrm{mmol}$), $\mathbf{1 g}$ (5.5 g , $25 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL}, 85 \%)$ were heated for 2 hours to afford (2b), $4.26 \mathrm{~g}(60 \%), \mathrm{mp} 256^{\circ} \mathrm{C}$ (pink powder, methanol); IR (KBr) $3400(\mathrm{OH}), 1700(\mathrm{CO}), 1500(\mathrm{CH}), 1180(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone- $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.91(\mathrm{~d}, 2 \mathrm{H}$, ArH), 7.18 (d, H, ArH), 7.60 (d, 2H, ArH), 7.68 ($\mathrm{s}, \mathrm{H}, \mathrm{cumH}$): $\mathrm{ms}: \mathrm{m} / \mathrm{z} 284\left(\mathrm{M}^{+}\right), 256\left(\mathrm{M}^{+}-28\right), 155$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$: C, 67.60; H, 4.25. Found C, 67.55; H, 4.19

7,8-Dihydroxy-3-phenyl-2H-chromen-2-one (2c).
A mixture of pyrogallol, $\mathbf{1 b}(5.25 \mathrm{~g}, 42 \mathrm{mmol})$, ethyl α-formyl acetate, $\mathbf{1 f}(8.0 \mathrm{~g}, 42 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{~mL}, 95 \%)$ were heated at $85^{\circ} \mathrm{C}$ for one hour to afford (2c), $9.0 \mathrm{~g}(87 \%), \mathrm{mp} 186$ ${ }^{\circ} \mathrm{C}$ (acetone); IR (KBr) $3300(\mathrm{OH}), 1680(\mathrm{C}=\mathrm{O}), 1280(\mathrm{C}-\mathrm{H})$, 1160 (CO) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (acetone-d ${ }_{6}, 400 \mathrm{MHz}$): $\delta 6.89$ (s, H, Ar), 7.12 (s, H, ArH), 7.18 (m, 3H, Ph), 7.69 (d, 2H, Ph), 7.71 (s, H, cumH), $8.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}): \mathrm{ms}: \mathrm{m} / \mathrm{z} 254\left(\mathrm{M}^{+}\right), 226\left(\mathrm{M}^{+}-28\right)$, $152\left(\mathrm{M}^{+}-102\right), 141\left(\mathrm{M}^{+}-113\right), 113$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$: C, 70.86; H, 3.96. Found C, 70.80; H, 3.98
7,8-Dihydroxy-3-(4-methoxyphenyl)-2 H -chromen-2-one (2d).
A mixture of pyrogallol, $\mathbf{1 a}(1.7 \mathrm{~g}, 14 \mathrm{mmol}), \mathbf{1 g}(2.8 \mathrm{~g}, 14$ $\mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL}, \% 85)$ was heated at $85^{\circ} \mathrm{C}$ for one hour then poured into the ice-water. It was filtered, dried and dissolved in boiling methanol with charcoal then filtered and dried to give (2d), $2.0 \mathrm{~g}(50 \%), \mathrm{mp} 176^{\circ} \mathrm{C}$ (acetone); IR (KBr) $3491(\mathrm{OH}), 2872(\mathrm{CH}), 1722(\mathrm{C}=\mathrm{O}), 1120(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (acetone- $\left.\mathrm{d}_{6}, 400 \mathrm{MHz}\right): \delta 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH})$, 6.97 (d, 2H, ArH), 7.10 (d, 2H, ArH), 7.95 (s, 2H, OH): ms: m/z $284\left(\mathrm{M}^{+}\right), 256\left(\mathrm{M}^{+}-28\right), 155$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}: \mathrm{C}, 67.60 ; \mathrm{H}, 4.25$. Found C, 67.65; H, 4.20
14-Phenyl-2,3,5,6,8,9-hexahydro-13H-[1,4,7,10]tetraoxacyclo-dodecino[2,3-g]chromen-13-one (3a).

Compound 1c ($3.80 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.25 \mathrm{~g}, 40 \mathrm{mmol})$, DMF (45 mL) and 2a ($5.1 \mathrm{~g}, 20 \mathrm{mmol}$) were heated at $80-90^{\circ} \mathrm{C}$ for 36 hours while stirring, then acidified with $\mathrm{HCl}(2 \%, 45 \mathrm{~mL})$ and filtered, dried then dissolved in CHCl_{3} filtered and dried on $\mathrm{Al}_{2} \mathrm{O}_{3}$. The residue was purified by column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give (3a), $1.40 \mathrm{~g}(19 \%), \mathrm{mp} 148{ }^{\circ} \mathrm{C}$ (methanol); IR (KBr) $2990\left(\mathrm{CH}_{2}\right), 1720(\mathrm{C}=\mathrm{O}), 1280(\mathrm{CH}), 1110$ $(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.81(\mathrm{~s}, 4 \mathrm{H}$, $2 \mathrm{OCH}_{2}$), $3.86\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.24(\mathrm{~m}, 4 \mathrm{H}$, $2 \mathrm{OCH}_{2}$), 6.91 ($\mathrm{s}, \mathrm{H}, \mathrm{ArH}$), 7.15 ($\mathrm{s}, \mathrm{H}, \mathrm{ArH}$), 7.18 (m, 3H, Ph), 7.69 (d, 2H, Ph), 7.71 (s, H, cumH): ms: m/z $368\left(\mathrm{M}^{+}\right), 280$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right), 196,168$; For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$ HRMAS Calcd. 368.125989; Found. 368.125643.

17-Phenyl-2,3,5,6,8,9,11,12-octahydro-15H-[1,4,7,10,13]pentaoxacyclopentadecino $[2,3-g]$ chromen-15-one ($\mathbf{3 b}$).
Compound 1d ($4.60 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.25 \mathrm{~g}, 40 \mathrm{mmol})$, DMF (45 mL) and $\mathbf{2 a}(5.1 \mathrm{~g}, 20 \mathrm{mmol})$ treated as outlined above to afford (3b), $1.23 \mathrm{~g}(15 \%), \mathrm{mp} 203{ }^{\circ} \mathrm{C}$ (acetonitril); IR (KBr) $2870\left(\mathrm{CH}_{2}\right), 1714(\mathrm{C}=\mathrm{O}), 1278(\mathrm{C}-\mathrm{H}), 1130(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.78\left(\mathrm{~s}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 3.96(\mathrm{t}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), $4.20\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 6.84(\mathrm{~s}, \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~s}, \mathrm{H}, \mathrm{ArH})$, 7.43 (m, 3H, Ph), $7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.72$ (s, H, cumH): ms: m/z $412\left(\mathrm{M}^{+}\right), 280\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}\right), 225,199,140$; For $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$ HRMAS Calcd. 412.152203; Found. 412.149698.

20-Phenyl-2,3,5,6,8,9,11,12,14,15-nonahydro-18H-[1,4,7,10,-13,16]hexaoxacyclooctadecino[2,3-g]chromen-18-one (3c).
Compound 1e (2.74 g 10 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$, DMF (30 mL) and $\mathbf{2 a}(2.55 \mathrm{~g}, 10 \mathrm{mmol}$) treated as described above to afford (3c), $0.49 \mathrm{~g}(10 \%), \mathrm{mp} 162{ }^{\circ} \mathrm{C}$ (ether); IR (KBr) $2890\left(\mathrm{CH}_{2}\right), 1720(\mathrm{C}=\mathrm{O}), 1280(\mathrm{C}-\mathrm{H}), 1120(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.68\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.72(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{OCH}_{2}\right), 3.77\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.20$ (m, 4H, ArH) 6.83 (s, H, ArH), 6.93 (s, H, ArH), 7.40 (m, 3H, $\mathrm{Ph}), 7.69$ (d, 2H, Ph), 7.71 (s, H, cumH): ms: m/z $456\left(\mathrm{M}^{+}\right), 280$ $\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}\right), 196,140$; For $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{8}$ HRMAS Calcd. 456.178418; Found. 412.176691

14-Phenyl-2,3,5,6,8,9-hexahydro-13H-[1,4,7,10]tetraoxacy-clododecino[2,3-h]chromen-13-one (4a).

Compound $1 \mathrm{c}(3.80 \mathrm{~g}, 20 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(4.25 \mathrm{~g}, 40 \mathrm{mmol})$, DMF (45 mL) and $\mathbf{2 c}(5.1 \mathrm{~g}, 20 \mathrm{mmol})$ treated as described above to afford (4a), $1.61 \mathrm{~g}(22 \%), \mathrm{mp} 177{ }^{\circ} \mathrm{C}$ (acetonitril); IR (KBr) $2825\left(\mathrm{CH}_{2}\right), 1710(\mathrm{C}=\mathrm{O}), 1290(\mathrm{C}-\mathrm{H}), 1118(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.85\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.88(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.95\left(\mathrm{t}, 2 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 4.27\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.38(\mathrm{t}, 2 \mathrm{H}$, OCH_{2}), 6.87 (d, 1H, ArH), $7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, 7.68 (d, 2H, Ph), $7.72(\mathrm{~s}, \mathrm{H}, \mathrm{cumH})$: ms: m/z $368\left(\mathrm{M}^{+}\right), 280\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$), 196, 168, 140; For $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$ HRMAS Calcd. 368.125989; Found. 368.127181.

17-Phenyl-2,3,5,6,8,9,11,12-octahydro-15H-[1,4,7,10,13]pen-taoxacyclopentadecino[2,3-h]chromen-15-one (4b).

Compound 1d ($4.60 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.25 \mathrm{~g}, 40 \mathrm{mmol})$, DMF (45 mL) and $\mathbf{2 c}(5.1 \mathrm{~g}, 20 \mathrm{mmol})$ treated as described above to afford (4b), $1.73 \mathrm{~g}(21 \%), \mathrm{mp} 138{ }^{\circ} \mathrm{C}$ (acetonitril); IR (KBr) $2830\left(\mathrm{CH}_{2}\right), 1720(\mathrm{C}=\mathrm{O}), 1290(\mathrm{C}-\mathrm{H}), 1120(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.83\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{OCH}_{2}\right), 3.87(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 3.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.40(\mathrm{t}, 2 \mathrm{H}$, OCH_{2}), $6.89(\mathrm{~d}, \mathrm{H}, \mathrm{ArH}), 7.21(\mathrm{~d}, \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, $7.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.75\left(\mathrm{~s}, \mathrm{H}\right.$, cumH): ms: m/z $412\left(\mathrm{M}^{+}\right), 280$ $\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}\right), 225,196,140$; For $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$ HRMAS Calcd. 412.152203; Found. 412.153009.

20-Phenyl-2, 3,5,6, 8, 9, 11, 12, 14, 15-nonahydro-18 H -[1,4,7,10,13,16]hexaoxacyclooctadecino[2,3-h]chromen-18-one (4c).

Compound 1e (2.74 g 10 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$, DMF (30 mL) and $\mathbf{2 c}(25.5 \mathrm{~g}, 10 \mathrm{mmol})$ treated as described above to afford (4c), $0.78 \mathrm{~g}(17 \%), \mathrm{mp}, 75^{\circ} \mathrm{C}$ (THF); IR (KBr) $2815\left(\mathrm{CH}_{2}\right), 1715(\mathrm{C}=\mathrm{O}), 1260(\mathrm{C}-\mathrm{H}), 1120(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.79\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{OCH}_{2}\right), 4.00(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{OCH}_{2}\right), 4.26\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.41\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.89(\mathrm{~d}, \mathrm{H}$, ArH), 7.22 (d, H, ArH), 7.44 (m, 3H, Ph), 7.71 (d, 2H, Ph), 7.75 (s, H, cumH) ms: m/z $456\left(\mathrm{M}^{+}\right), 280\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}\right), 196,140$; For $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{8}$ HRMAS Calcd. 456.178418; Found. 456.178598. 14-(4-Methoxyphenyl)-2,3,5,6,8,9-hexahydro-13H-[1,4,7,10]tetraoxacyclododecino $[2,3-h]$ chromen-13-one ($\mathbf{4 d}$).

Compound 1c ($3.80 \mathrm{~g}, 20 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(4.25 \mathrm{~g}, 40 \mathrm{mmol})$, DMF (45 mL) and $\mathbf{2 d}(5.1 \mathrm{~g}, 20 \mathrm{mmol})$ reacted as described above to afford (4d), $2.14 \mathrm{~g}(27 \%)$, mp $182{ }^{\circ} \mathrm{C}$ (THF); IR (KBr) $2825\left(\mathrm{CH}_{2}\right), 1710(\mathrm{C}=\mathrm{O}), 1210(\mathrm{C}-\mathrm{H}), 1140(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.85\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.26\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.44(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 6.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH})$, $7.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{cumH}): \mathrm{ms}: \mathrm{m} / \mathrm{z} 398\left(\mathrm{M}^{+}\right), 310$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right), 226,155$; For $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}$ HRMAS Calcd. 398.136553; Found. 398.140785.

17-(4-Methoxyphenyl)-2,3,5,6,8,9,11,12-octahydro-15H[1,4,7,10,13]pentaoxacyclopentadecino [2,3-h]chromen-15-one (4e).

Compound 1d ($4.60 \mathrm{~g}, 20 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(4.25 \mathrm{~g}, 40 \mathrm{mmol})$, DMF (45 mL) and $\mathbf{2 d}(5.1 \mathrm{~g}, 20 \mathrm{mmol})$ reacted as described above to afford (4e), $1.85 \mathrm{~g}(21 \%), \mathrm{mp} 134^{\circ} \mathrm{C}$ (acetonitrile); IR (KBr) $2810\left(\mathrm{CH}_{2}\right), 1720(\mathrm{C}=\mathrm{O}), 1225(\mathrm{C}-\mathrm{H}), 1140(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.76\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.86$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.39$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.86(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.19(\mathrm{~d}, 1 \mathrm{H}$, ArH), 7.66 (d, $2 \mathrm{H}, \mathrm{ArH}$), 7.68 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{cumH}$): ms: m/z $442\left(\mathrm{M}^{+}\right)$ $310\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}\right), 284,226,155$; For $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$ HRMAS Calcd. 442.162768; Found. 442.163086.

20-(4-Methoxyphenyl)-2,3,5,6,8,9,11,12,14,15-nonahydro-18H-[1,4,7,10,13,16]hexaoxacyclooctadecino[2,3-h]chromen-18-one (4f).

Compound 1e (2.74 g 10 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$, DMF (30 mL) and $2 \mathbf{2 d}(5.1 \mathrm{~g}, 20 \mathrm{mmol}$) reacted as described above to afford ($\mathbf{4 f}$), $0.44 \mathrm{~g}(9 \%), \mathrm{mp} 112^{\circ} \mathrm{C}$ (ether); IR (KBr) $2825\left(\mathrm{CH}_{2}\right), 1715(\mathrm{C}=\mathrm{O}), 1215(\mathrm{C}-\mathrm{H}), 1150(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{~Hz}\right): \delta 3.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 3.78(\mathrm{~m}, 8 \mathrm{H}$, $4 \mathrm{OCH}_{2}$), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.02(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.27\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.38\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.88(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{ArH}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH})$, $7.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{cumH}): \mathrm{ms}: \mathrm{m} / \mathrm{z} 486\left(\mathrm{M}^{+}\right), 310\left(\mathrm{M}^{+}-\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}\right)$, 284, 226, 155; For $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{9}$ HRMAS Calcd. 486.188983; Found 486.187198.

Acknowledgements.
The support of this work with ITU / DPT-126 project to purchase the JEOL-FP750 spectrofluorometer was heartily acknowledged.

REFERENCES AND NOTES

[1] R. M. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 95, 2529 (1995).
[2] J. S. Bradshaw and R. M. Izatt, Accs. Chem. Res., 30, 338 (1997).
[3] Y. Inoue and G. W. Gokel, Cation Binding by Macrocycles, Marcel Dekker, New York, N. Y. 1990, references cited.
[4] L. R. Sausa and J. M. Larson, J. Am. Chem. Soc., 99, 307 (1977).
[5] H. Shizuka, K. Takada and T. Morita, J. Phys. Chem., 84, 994 (1980).
[6] J. -P. Desvergne and A. W. Czarnik, Chemosensors of Ion and Molecule Recognition, NATO ASIC, Vol. 492, Kluwer, Dordrecht, 1997.
[7] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 97, 1515 (1997).
[8] Ç. Erk, A. Göçmen and M. Bulut, J. Incl. Phenom., 31, 319 (1998).
[9] Ç. Erk, A. Göçmen and M. Bulut, Supramol. Chem., 11, 49 (1999).
[10] Ç. Erk, A. Göçmen and M. Bulut, J. Incl. Phenom., 37, 441 (2000).
[11] H. -G. Löhr and F. Vögtle, Acc. Chem. Res. 18, 65 (1985).
[12] R. Crossley, Z. Goolamali and P. G. Sammes, J. Chem. Soc. Perkin Trans. 2, 1615 (1994).
[13] M. T. Alonso, E. Brunet, C. Hernandez and J. C. RodriguezUbis, Tetrahedron Lett., 34, 7465 (1993).
[14] Ç. Erk, Ind \& Eng. Chem. Res., 393582 (2000), references cited.

